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Abstract

We develop a methodology to ensure that the stress tensor, regardless of its number of

independent components, can be reduced to an exactly equivalent one which has the same

number of independent components as the surface force. It is applicable to the momentum

balance if the shear viscosity is constant. A direct application of this method to the energy

balance also leads to a reduction of the dissipation rate of kinetic energy. Following this

procedure, significant saving in analysis and computation may be achieved. For turbulent

flows, this strategy immediately implies that a given Reynolds stress model can always

be replaced by a reduced one before putting it into computation. Furthermore, we show

how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent

Lamb vector alone, which is much simpler. As a first step of this alternative modeling

development, we derive the governing equations for the Lamb vector and its square. These

equations form a basis of new second-order closure schemes and, we believe, should be

favorably compared to that of traditional Reynolds stress transport equation.
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technical monitor, and the National Aeronautics and Space Administration under NASA

Contract No. NAS1-19480 while the first and second authors were in residence at the
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1. Introduction

Fluid dynamics needs very intensive analyses and computations, and a reduction of

this work can be very useful. In this paper, we demonstrate that this can be achieved for the

balance of momentum and energy, for both laminar and turbulent flows, and this reduction

has roots in the very fundamental nature of fluid motion. Furthermore, our analysis

suggests that the mean turbulent Lamb vector has advantages over the traditional Reynolds

stress; its transport equation is derived as a foundation for an alternative approach in

turbulence modeling.

2. Reduced Stress Tensor for Newtonian Fluid

Let S and S' be two arbitrary differentiable second-rank tensors. If their difference is

a divergence-free tensor, there must be V. S = V. S' = F, say. We call S and S' the tensor

potential of the vector F; clearly, the number of potentials for F is infinite. This gives us

a chance to construct the simplest potential, whose number of independent components

should be the same as that of F. As a theorem, this construction is achievable through

making the Stokes-Helmholtz (S-H) decomposition for F:

F=V¢+VxA, V-A= 0, (1)

where ¢ and A are the scalar and vector S-H potentials of F, and have altogether three

independent components. It is well known that decomposition (1) exists globally for any

integrable F. Now, let I be the unit tensor and write

g=4_I+IxA, or Sij=¢6ij--eijkAk, (2)

then V. g is nothing but (1). This g is exactly the desired three-component tensor

potential of F, which we refer to as the S-H tensor potential of F. Note that it consists

of an anisotropic part and a skew-symmetric part, whereas itself is neither symmetric nor

skew-symmetric.

Since the S-H decomposition stands at the center of our reasoning, we make some

remarks on it. It is well known that for a given vector F, finding its potentials ¢ and A

amounts to solving a scalar and a vector Poisson equations, of which the integral repre-

sentation is in terms of the Green's function of Laplace operator. However, this classical

representation is often inconvenient in practice. If the flow is unbounded or with periodic

boundary conditions, ¢ and A can of course be easily found in the Fourier space; but the

best approach is using the helical-wave decomposition (I-IWD), with the eigenvectors of

the curl operator forming a complete orthonormal basis. In fact, HWD is nothing but a

further sharpening of the S-H decomposition. 1 Whereas the existing theory and application

of HWD have been confined to unbounded flow, for which the basis vectors can be easily

obtained in Fourier space or in terms of some special functions, 1'2,3 it has been proven by



Yoshidaand Giga4 that the complete orthonormal HWD basis alsoexists in an arbitrary
bounded domain. In this paper we shall not go into thesedetails (seeVv'uet al.5); rather,
wesimply assumethat, in any flow domainand for any vector of our concern,the splitting
of this vector into the longitudinal (curl-free) part and transverse (divergence-free)part
canbe obtained readily using the proceduresdiscussedabove.

Now, considera Newtonian fluid, of which the viscousstresstensor is proportional to
the strain-rate tensor D = D T, where the superscript T means transpose. Let 0 = V • u

and w = V x u be the dilatation and vorticity, respectively, and f_ = -1_ T be the anti-

symmetric spin tensor such that Vu = D + ft. Moreover, let p and A be the first and

second dynamic viscosities. Then, it is easily seen that there exists an identity 6-s

D = 0I+1_- B,

where

B--0I-Vu r with V.B=0 (3a, b)

is known as the surface-strain-rate tensor (Dishington 9, whose definition differs from (3a)

by a transpose). Therefore, from the Cauchy-Poisson constitutive equation one obtains an

intrinsic triple decomposition of the stress tensor T:

T = -HI + 2#fl - 2#B, (4a)

where

H - p - (A + 2#)0 (4b)

is the isotropic part of T. Correspondingly, we have an intrinsic triple decomposition of

the surface stress (the traction) at any surface element of unit area in the fluid or on its

boundary:

t = n- T = -1-In + r + t_, (5a)

where -Hn is the normal stress due to compression/expansion, and

r_=_wxn, t_--2#n-B (5b, c)

are the shear stress and stress due to the resistance of the viscous fluid surface to its strain,

respectively.

It is now evident that, as long as # = constant, then pB is divergence-less and can well

be dropped off from the momentum equation. What left is precisely the three-component

S-H tensor potential

= -HI + 2.a, (6a)

such that the Navier:Stokes equation with an external body force p f,

Du

p---_ - pf = V-T = -VII- V x (#w) (6b)
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representsa natural S-H decompositionof the total body force (inertial plus external).

Although equation (6b), in particular its incompressibleversion, has beenknown for
long time,1°'11the concept of reduced stress tensor (6a) is not widely appreciated, and it._

application in practice has not been fully explored. The only exception known to the authors

is the work of Eraslan et al. 12, who, in developing a numerical method, noticed that some

components of Tij played no role in their scheme and simply ignored them. A cubic mesh

box. originally having 27 control points, was thereby simplified to having 7 points only.

This reduced the CPU time for estimating stress by 70%, and for the overall computation,

by 40%. This example indicates that the saving due to intentionally replacing T by @ can

be very significant.

3. Self Balance of Surface Strain and Reduced Dissipation

In contrast to the momentum balance with constant/z, where the surface-strain tensor

B simply plays no role, we now show that in the energy balance it does play a role but is

always self-balanced. This interesting point has never been noticed before.

The conventional energy balance reads

p_ t,,I2 = pI.,* + Op+ v. (T.,,)- _, (7)

where

g2 = 2#Dij(Tij + p_Sij) = _0 2 + 2t-zDijDij

is the dissipation function. Using an identity of Truesdell, 1° we found

(Sa)

= (/_ + 2/,t)t9 2 + ga, '2 -- V. (2/,B. u). (8b)

Therefore, substituting T = _' - 2#B into (7), the terms containing B are precisely

canceled. This result implies:

Theorem. For Newtonian fluid with constant shear viscosity, the work rate done by the

viscous resistance to surface strain is locally balanced by its own dissipation rate.

Like the skin-friction, the viscous resistance of a fluid-surface element to its strain

usually does negative work, and hence its dissipation, -V. (2pB. u) - Os, say, is positive.

But, this may not be always so.

Now, due to the theorem as well as (6), for constant it, the balance of both momentum

and energy of a Newtonian fluid can always be replaced by that of a fictitious fluid which

has no surface strain at all. Indeed, the energy balance now reads

P-D-i lu = pf. u + tgp - V- (uII+ _w x u) - O, (9a)
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or, for any material volume V,

D f l p]u,2d VDt _ 2 = ,(Pf "

where

is the reduced dissipation, and

u + Op)dV + for

= (A+2p)0 2-b#_2 > 0

t" = n- _' = -1-in + _w × n

(9b)

(10)

is the reduced stress due to compressing and shearing processes only. These equations can

also be directly derived from the inner product of (6b) and u.

Care must be taken when providing interpretations for Eqs. (9)-(10). We find that

there is an exact cancelation between the portion of the dissipation and that of the work

rate done by surface stress. Although computation efforts can be reduced by using the

reduced stress, it would be misleading to take the "reduced dissipation" as the "total

dissipation". Otherwise, for example, even a solid-like rotation (say, occurred near the

axis of a vortex) would have a dissipation. This is of course not the real physics. Like the

case of stress tensor, the true dissipation for incompressible fluid is still given by

_=_+q's, with _=#a, ,2, q)s=2#V.(u. Vu).

With the above explanation, our results (9) and (10) imply another significant sim-

plification and some further physical insight. While it is known that for unbounded flow

or under periodic boundary conditions the total dissipation in V can be written as

; OdV = f [(A+ 2 )Oz + U 2]dV = /v dL (11)

so that the integration volume can be reduced to the regions with nonzero w and 0. For

example, for a Rankine vortex, the total dissipation can be computed based on (7a),

which requires integration of 2#DijD 0 over the whole irrotational domain, but, by (10)

it becomes an integration of the constant #w 2 over the solid vortex core. Now we have

shown that, with constant # and the reduced dissipation function, the boundary-condition

dependence of (11) can be removed.

Based on the fact that for incompressible flow" the viscous force depends on the

skew-symmetric part of Vu but the dissipation rate (8a) depends on its symmetric part,

LargestrSm 13 noticed the existence of potential flow with viscous dissipation. He illus-

trated the situation by a steady axisymmetric flow driven by a rotating cylinder of radius

a and tangent velocity V (equivalent to the solid core of a Rankine vortex). The flow
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is irrotational but with a local dissipation rate q) = 4#V2a2/r 4 and a total dissipation

4rcpV 2. We now further see that this dissipation is exclusively from the surface strain,

and is solely balance by the work rate done by the resistance to that strain, which is in

turn provided by the rotating cylinder with a total power input 4rrpV 2 = #_,2 . rra 2 to

keep the flow steady. Note that on a rotating solid boundary with angular velocity W,

like the above cylinder surface, the stress ts due to surface strain can always be absorbed

into the shear stress r, as long as the vorticity to in (5b) is replaced by a relative vorticity

wr = w - 2W. 7 Therefore, tile work down by the cylinder surface to retain the flow can be

explained as from either the surface-stain stress ts or the shear stress r.

It should be emphasized that the stress t_ due to surface strain may appear should we

go beyond the balance of momentum and energy. 6j4 Its most important appearance is in

the stress balance on an open fluid surface element. Specifically, on a fluid-fluid interface or

free surface t, plays a crucial role: 8 its normal component joins the balance with pressure

and surface tension, while its tangent components are solely responsible for balancing the

interfacial tangent vorticity. Note, however, this appearance of t_ is relevant only to the

dynamic boundary condition on such an interface only; thus, Eqs. (6) and (ga, b) still hold.

As a result, saving is still achieved even with an interface as the flow boundary.

As noted already, eqs (6) and (9a,b) do not apply to flow with variable shear viscosity,

where a direct coupling between momentum balance and thermodynamics adds additional

terms to the S-H tensor potential (6), which, although can always be obtained, do not have

the above neat form.

4. Turbulent Stress Tensor versus Turbulent Force

W'e now turn to turbulent flow. We first show how to achieve a computational saving

for a given model of turbulent stress tensor, say rij = -uiuj = rji. Here and below, unless

stated differently, u is referred to fluctuating velocity, and so are its derivatives. The

overline means ensemble average. Once again, in the mean turbulent momentum equation

and energy equation [or filtered equation if large-eddy simulations (LES) is considered],

what counts is only the turbulent force wij,i = fj, say; so we may similarly replace rij by a

three-component S-H tensor potential 9ij, which amounts to finding the S-H decomposition

of f.

As an illustration, consider an unbounded or spatially periodic flow so that in the

Fourier space spanned by the wave vector k (where we use a,/3, 7, ... = 1, 2, 3 to denote

Cartesian components), there is

f.a(k) = ik_r_a(k), i = v/S-1, (12)

and (1) becomes

fz(k) = i[ko¢(k) + ez_koA._(k)]. (13)
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To obtain ¢(k) and A._(k) from the given r_e(k), note that the vector identity in physical

space

v2f = v(v. f) - v × (v × f)

implies

Comparing this and (13), it follows that

i¢(k)- koI_(k) k.fe(k)
k2 , iA_ = e_6p k2

Therefore, from (12) we obtain the reduced stress tensor

(114)

It can be easily checked that

By using (14), any models of the turbulent stress tensor r_z(k), linear 15,16 or nonlineaP v-21,

can be reduced to a S-H tensor potential before being put into numerical computation. As

noted earlier, in principle this procedure can be applied to any bounded domain as long

as the HWD basis therein has been established.

Although (14) can already bring great computational saving, however, it does not

simplify theoretical analysis since one still has to model the full Reynolds stress 7_a. We

thus propose a more thorough approach, which would lead to a significant theoretical

simplification in turbulence modeling as well. The basic idea is that as long as an S-

H decomposition of f is obtained, it is sufficient to directly model the three-component

turbulent force, rather than the much more complicated six-component turbulent stress

tensor.

We assume the flow is incompressible for simplicity. The turbulent force can be

expressed in terms of the "vorticity form":22

f= -v. (_) = -vie- _, (15)

where

K_--_[ul 2 and I_=w×u (16a, b)

are the mean turbulent kinetic energy and mean turbulent Lamb vector, respectively.

Obviously, K is a part of the scalar potential of f, and the other part comes from the

curl-free longitudinal part of I. Therefore, as long as we have split I into a longitudinal
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part, _0= VX, and a transversepart, l±, then we immediately arrive at the desired

decomposition of turbulent force:

f = -v(IC + x) - i±, (17)

which sharpens (15). Moreover, since for incompressible flow there is

V.l = -V2h0 = -V2K,

where h0 is the stagnation enthalpy, it follows that if we define

_) = X + K, (18)

then

V2,/, = 0, (19)

of which the solution depends on boundary values of X and K only. Once these values are

given, the internal values of K in the flow domain can be inferred from that of X. Therefore,

the problem of modeling turbulent force exclusively amounts to modeling the mean turbulent

Lamb vector. This observation further confirms that the Lamb vector is the key in nonlinear

fluid dynamics including anisotropic turbulence; a rational mathematical reduction is often

associated with a sharper physical insight.

5. Reynolds Stress Transport versus Lamb Vector Transport

The second-order closure models (full Reynolds stress transport) represents the highest

level of closure currently feasible in practical Reynolds-average computations. In prin-

ciple, these models account for more turbulence physics than lower-level models, e.g.,

two-equation models. As reviewed by Speziale 16, full Reynolds-stress transport may" be

used as a starting point to deduce improved two-equations models under the equilibrium

limit of homogeneous turbulence.

The previous section clearly demonstrated that the problem of Reynolds-stress mod-

eling can be cast to the modeling of turbulent Lamb vector. Thus, the first step towards

directly modeling turbulent force at the level of second-order closure is to derive the trans-

port equation for l, which is much simpler than that of the full Reynolds stress.

From the exact Navier-Stokes equation and vorticity equation (the notations now

stand for instantaneous quantities), it follows that the Lamb-vector transport equation

reads
Ol
-_ + tt. VI + 1. VU -- vV21 = Q, (20a)

where

Q = Vh0 x _o - 2v_.i × U i (20b)
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is the source. The first term of (20b) is an inviscid coupling betweenlongitudinal and
transverse parts, but the seconddoesnot represent the dissipation of I at all. We found

that

1 1

-2uto,l x u,l = -2uV- (w x D) + _(p- V_i, + ul_), l_ - (V x to) x to, (21)

where ¢ = #o., 2 is the reduced dissipation.

In order to gain more understanding of the evolution of Lamb vector, let us consider

its square, characterized by J = 12/2. It is easily shown that the J-equation reads

OJ

0-7 + u. VJ + l- D. l- uV_J = -uVl" Vl+ O J, (22a)

where • means twice contraction so that vVl : Vl is the J-dissipation, and

Qj = I. Q = (_tw - _Zu) • Vh0 - 2(Vw 2 • Vu 2 + 4o:- D- D. to - 4w. D. VT-/), (22b)

where 7"t = w. u is the helicity. In (22b), all viscous terms are from the second term of

(20b). For two-dimensional flow Qj reduces to

v 2

Qj = -Ju.Vho- _Vw • Vu 2. (23)

Note that for potential flow or Beltrami flow both (20a,b) and (22a,b) become the trivial

identity 0 = 0.

It is now clear that the structure of (20) and (22) is precisely the same as that of

the two-dimensional equations for vorticity gradient and its square, but subjected to the

forcing terms. Therefore, the existing studies on the latter (e.g., Novikov 23) can well be

utilized to explore the behavior of (20) and (22). In particular, the increase of J is due to

the shrinking of the fluid element rather than stretching. If the stretching is dominating

in a flow field, the integrated "Lamb-enstrophy" J must exponentially decrease by this

mechanism. This is consistent with the fact that as the turbulent eddies becomes smaller

and smaller due to stretching, the fluctuating Lamb vector is also reduced -- eventually

we have l __ 0 for fine-scale turbulence, which then becomes approximately homogeneous

and isotropic. Note that in (22b), the term -2uwiDijDjkwk is associated with vortex

stretching, which also provides a negative source (a sink) of J in a highly stretched vortical

flow, thus further reduces the Lamb vector in fine-scale turbulence. Consequently, in the

turbulent force there remains the direct balance between the turbulent kinetic energy K

and reduced dissipation ^=e #w 2,, which leads to the Kolmogorov law.

To investigate the effects of the mean flow on turbulence, we perform a Reynolds

average. The mean-flow part is now denoted by capital letters and fluctuating part is still
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presented by lower-case letters. After subtracting mean-flow terms, the desired transport

equation for the mean fluctuating Lamb vector reads

OZ

0--t + U- Vl + l. _--TU- v_-721 = ql + q2 + q3 (24)

On the right of (24), the first source is

q_ -- Vh0 x w - 2vw i x u,i, (25)

which has the same structure as (20b) and involves second moments at the same point.

The second source reads

q2 = -(u. VL t +/5 t • Vu), (26)

which contains the interaction between the mean flow and some second moments. Here,

L t -=w x U+f_ x u

is a "quasi-Lamb vector" in the sense that its first term is the analogy of Coriolis force

acted on the mean flow caused by fluctuating vorticity, and the second term is that acted

on fluctuating flow caused by the mean vorticity. Finally, the third source

qa - -(u. VI+ I- Vu) (27)

is a triple correlation and surely needs modeling. Equation (24) indicates that I is advected

and stretched-turned by the mean flow field.

The structure of ql clearly implies that the pressure-strain term in common modeling

i.q now reduced to the correlation of Vh0 and w. Because the variation of h0 is expected to

be milder than h, and since only the regions with w ¢ 0 needs be modeled, it is expected

that some troublesome aspects of pressure-strain modeling 16 could be bypassed. The

second term of (25), having been identified not as the dissipation, needs some attention.

Although it is a viscous effect, it might not be completely negligible since the derivatives

of fluctuating vorticity and velocity are involved. A further analysis of ql could be made

by looking at (22).

On the other hand, we see in (24) that q2, the triple correlation, and the advecting-

stretching-turning of l by the mean flow, have the same theoretical structure since they

come from the single root; but their roles are very different. A further study of this type

of structure is desirable.

Obviously, various second moments are not equally important, and one can only select

the most relevant one to derive its transport equation and close the turbulence modeling

thereon. This is the basic spirit of second-order closure. In the usual approach, one takes

the transport equation of Reynolds stress, in which some other second moments, such as

-9-



the pressure-stain correlation and dissipation-rate correlation, have to be modeled. Much

efforts have been paid to deal with some redundant quantities and complexity because the

full Reynolds stress is reducible. Now the tensorial Reynolds-stress equation is reduced to

the vectorial mean Lamb-vector equation, in which the remaining quantities can no longer

be further reduced. In this sense, we may call the above approach as an irreducible second-

order closure. An obvious feature of this irreducibility is that the terms to be modeled are

nonzero only in those regions where w # 0; or, approximately, the regions with high peak

of fluctuating vorticity. This is precisely the essence of turbulence as randomly stretched

vortices.

6. Conclusion

In this theoretical paper we systematically explored the concept and application of

reduced stress tensor and dissipation function, showing that they mav bring significant

savings in analysis and computation. The development is solely based on the classic Stokes-

Helmholtz decomposition, or its modern sharpening, the helical-wave decomposition.

In particular, for turbulent flows we propose that the study and modeling of Reynolds

stress tensor could be reduced to that of the mean turbulent Lamb vector alone, of which

the governing equation is closely similar to that for the two-dimensional vorticity gradient.

This equation would be a new basis of irreducible second-order closure schemes. A numer-

ical examination of the budget and spectra of terms in this equation, including those that

need be modeled, is being undertaken and will be reported separately.
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